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Abstract

It is pointed out that, in recent publications, several authors have incorrectly omitted a porosity factor, from a
term modeling the e�ect of a magnetic ®eld or rotation, in the momentum equation modeling ¯ow in a porous
medium. The error is linked with the way in which the pressure is incorporated in the standard di�erential form of

Darcy's law, and this is discussed in detail. A new form for this equation is proposed. Also, the analogy between: (i)
Darcy ¯ow in an isotropic porous medium with a magnetic ®eld or rotation e�ect present; and (ii) ¯ow in a medium
with anisotropic permeability, is discussed. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The paper by Yih [1] is remarkable because, despite
the fact that it is on MHD (magnetohydrodynamic)

mixed convection, all the results reported are for the
case of zero Hartmann number, which is the case
where the MHD e�ect is absent. However, a much

more important feature of the paper is that the e�ect
of the magnetic ®eld has been modelled incorrectly. In
common with many other authors who have written

on the e�ects of a magnetic ®eld or rotation on ¯ow in
a porous medium, the author of [1] has overlooked a
subtlety which is pointed out and discussed in Section
2. The same paper [1] serves to illustrate an analogy

between on the one hand ¯ow in an isotropic porous
medium subject to the e�ect of a magnetic ®eld, or the
e�ect of rotation, and on the other hand ¯ow in a

porous medium with anisotropic permeability, for the

case of Darcy ¯ow. This analogy is discussed in
Section 3.

2. The momentum equation

Eq. (2) of [1] reads
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where u and v are the components of the velocity in
the x and y directions respectively, P is the pressure, r
is the density, n is the kinematic viscosity, K is the per-

meability of the porous medium, s is the electrical con-
ductivity, B0 is the externally imposed magnetic ®eld in
the y-direction, g is the gravitational acceleration, T is

the temperature and T1 is the free stream temperature,
in this boundary layer approximation. The author of
[1] does not distinguish between the Darcy (seepage)
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velocity (average over a representative elementary
volume (REV) of the porous medium) and the intrinsic

velocity of the ¯uid (average over the ¯uid portion of
the REV). The Darcy velocity equals the intrinsic
velocity multiplied by f, the porosity of the porous

medium. This is the Dupuit±Forchheimer relationship.
It is important to note that in the standard formu-
lation of Darcy's law (whereby the permeability K is

de®ned) it is the ¯uid pressure (an intrinsic quantity)
and the Darcy velocity which appear. Consequently,
the velocity u which appears on the right-hand side of

Eq. (1) has to be the Darcy velocity and n represents
an e�ective kinematic viscosity in the second term on
the right hand side. On the other hand, the magnetic
drag term (the second to last term) involves the intrin-

sic velocity (since that drag is a body force on the
moving ¯uid, and not on the stationary solid matrix of
the porous medium). If u is de®ned to be the Darcy

velocity, then the magnetic drag term requires a factor
fÿ1. Likewise, it is the intrinsic velocity which is
involved in the inertia terms, and so both terms on the

left-hand side must be multiplied by a factor fÿ2.
(Alternatively, if u is de®ned as the intrinsic velocity, K
has to be replaced by K/f.) The use of the wrong

equation is of long standing. It appears, for example,
in the review by Raptis and Perdikis [2].
In the case of the e�ect of rotation, expressed as a

Coriolis force, a similar argument applies. It is the

inertial force on the ¯uid, and not the ¯uid±solid com-
posite, which is involved, and hence it is the intrinsic
velocity which appears, multiplied by the angular vel-

ocity, in the Coriolis term which is added to the
momentum equation. Many authors have overlooked
the fact that a factor f 2 should appear in the denomi-

nator of the Taylor number (or, equivalently, a factor
f in the numerator of the Ekman number) which they
use. For example, the factor is missing in [3], but
Vadasz in his review [4] and other recent papers has

the correct factor.
The interpretation of the pressure in the Darcy

equation as an intrinsic quantity is consistent with the

way in which a buoyancy term is added in combi-
nation with the pressure gradient term; the porosity is
not involved. Here Eq. (1) serves as an example. The

published literature is in consistent agreement on this
point. If the pressure were an REV average, then a fac-
tor f would be involved in the buoyancy term (see

below).
It is worthwhile considering in detail why the press-

ure in the traditional Darcy di�erential equation is
necessarily an intrinsic quantity rather than a seepage

quantity. The reader should note that the original
Darcy equation (relating to Darcy's experiments), in
the form `pressure drop divided by length of column

equals constant times seepage velocity', leads directly
to the modern di�erential equation for su�ciently slow

¯ow. For the purpose of deriving this di�erential
equation, the REV is properly regarded as a miniature

column to which Darcy's result can be applied. As well
as the assumptions of steady ¯ow and incompressible
¯uid, three other important assumptions are made.

1. The porous medium is assumed to be homogenous.
2. The macroscopic (REV scale) ¯ow is assumed to be

unidirectional.
3. A continuum assumption is made.

A consequence of the ®rst assumption is that no dis-
tinction need be made between surface porosity and
volume porosity. A consequence of the second assump-
tion is that there is no ¯ow out of the sides of the min-

iature column, so the situation in that column is the
same as in the large column. A consequence of the
third assumption is that it is permissible to consider

the mathematical limit as the length of the miniature
column tends to zero. In Darcy's experiments the
pressure drop was a ¯uid pressure drop measured in

the usual way by a pair of manometers placed outside
the porous medium. Each manometer measured the
¯uid pressure at the point at which it was placed and

no cross-sectional average was involved. Rather,
because of assumptions 1 and 2 above, the pressure
could be regarded as uniform, and so the pressure
measured at one point was representative of the whole

cross-section occupied by ¯uid, so the pressure
measured by Darcy is an intrinsic pressure. It follows
that, after the appropriate limit of length of the minia-

ture column tending to zero is taken, the pressure in
the modern di�erential equation is also an intrinsic
quantity. This means that the pressure gradient at the

REV level is e�ectively the average of the microscopic
(pore scale) ¯uid pressure gradient averaged over just
the ¯uid portion of the REV.
(Professor J. L. Lage has pointed out to the author

in a personal communication that the fact that Darcy
measured pressure just outside the porous medium
rather than just inside it means that an entrance and

exit e�ect is involved, and this a�ects the permeability
value measured in his experiments. In the argument
presented here it is assumed that this e�ect is negli-

gible.)
Conversely, one can start with the di�erential

equation and deduce an expression for the Darcy

pressure drop. Because of assumptions 1 and 2, macro-
scopic transverse pressure gradients are zero. Further,
by mass conservation, the seepage velocity is indepen-
dent of the longitudinal coordinate, and so the same

must be true of the longitudinal pressure gradient. For
an integration over a volume, one can treat the
medium as a continuum, in which no distinction need

be made between the ¯uid and solid phases. That
means that mathematically one can average over the
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entire cross-section of the Darcy column, and integrate
between the ends of the column, and thereby recover

the original Darcy expression for the pressure drop. In
fact, since the pressure gradient is uniform over the
whole column, the mathematics involved is very

simple. In this process one starts with a ¯uid pressure
gradient and ends up with a ¯uid pressure drop. Thus
the argument is consistent.

There is overwhelming experimental evidence that
the conventional di�erential equation, with P denot-
ing an intrinsic quantity and K the standard per-

meability, is correct. If P were an REV averaged
quantity but with K unchanged, then a factor f
would have to appear in the buoyancy term in the
momentum equation, and consequently in the de®-

nition of Rayleigh number (for example, in the last
term of Eq. (6.4) and in (6.19) of the book by
Nield and Bejan [5]), and then there would be a

discrepancy with the well established experimental
value for the critical Rayleigh number for the
Horton±Rogers±Lapwood problem (see Section 6.9.1

of [5]), to give just one example. Elder [6] obtained
the experimental value 40 with an estimated exper-
imental error of 10%, in comparison with the

theoretical value of 39.48. In his experiment he used
a bed of packed spheres, and so the porosity was
about 0.4. A critical Rayleigh number of 40/0.4 is
incompatible with the experimental results.

When the conventional de®nition of permeability
was introduced about 1920 (for references, see [7]),
a de®nition which was popularized by the writings

of Muskat [8], workers had the option of invoking
the Dupuit±Forchheimer relationship and expressing
Darcy's law in terms of intrinsic velocity, e�ectively

de®ning a di�erent permeability which incorporates
the factor f, but they did not do so. The mixture
of intrinsic pressure and seepage velocity in the con-
ventional equation is unfortunate. Lage [7] has

recognized this, and has written an equation in
terms of a seepage pressure and seepage velocity.
The author now proposes what he believes is a bet-

ter alternative, namely to write the entire equation
in terms of intrinsic quantities. In order to avoid
possible confusion,we will introduce a new quantity

with a di�erent name, symbol and dimensions from
the permeability K. The Darcy di�erential equation
is written in the form

rP� mRV � 0: �2�

where R denotes the `retardability', which has
dimensions (length)ÿ2 and is thus measured in terms
of the unit mÿ2, and is de®ned in terms of the standard

permeability K and porosity f by R=f/K, while P is
the intrinsic pressure and V is the intrinsic velocity.
The major advantage of the new form is that it gener-

alizes in a natural way to the Brinkman equation,

rP� mRVÿ mEr2V � 0: �3�

where mE is an e�ective viscosity. Volume averaging
over an REV gives the estimate mE=m (rather than m/
f ). Clearly, the porosity f does not appear explicitly
in the equation, but is incorporated into the geometri-
cal factor R. Other intrinsic terms, like the Coriolis

term can be added and expressed in terms of V, and
again the porosity does not appear in these terms. For
the case of buoyancy, the term to be added to the left

hand side of Eq. (3) is ÿrg, where g is the gravi-
tational acceleration. A minor bonus is that the div-
ision solidus does not appear in the equation. The new

form of the equation should be especially convenient
when modeling hyperporous media [9], those for which
the Darcy number is not small compared with unity,
and so the Darcy and Brinkman resistance terms are

of the same order of magnitude throughout the porous
medium. As Nield and Lage [9] pointed out, in such
media the permeability cannot be determined in a

simple way from a Darcy type experiment.
For the Brinkman±Forchheimer equation the follow-

ing form is proposed:

rP� mRVÿ mEr2V� CNrR1=2VV � 0: �4�

The new nondimensional Forchheimer coe�cient CN is

related to the old Forchheimer coe�cient CF used in
[5] by CN=f 3/2CF. There is evidence which suggests
that CN may be closer to being a universal constant

than is CF. For example, Beavers and Sparrow [10]
noted that for their ®brous foam metal materials CF

was about 0.1, compared with the value 0.55 obtained
with beds of spheres [11]. Unfortunately the porosity

values are not reported in [10], but plausible ballpark
values are 0.9 for the ®brous materials and 0.4 for the
beds of spheres, and these values yield the CN values

0.085 for the ®brous material and 0.14 for the beds of
spheres.
One should note that there are di�culties in de-

riving the Darcy equation by considering a force
balance over an REV considered as a control
volume, because not all of the material in the con-
trol volume is free to move, and an indeterminate

solid±solid contact force is involved at a solid por-
tion of the boundary of an REV. Rather, the
Darcy equation is best regarded as a statement

about the ¯ow of ¯uid relative to the solid matrix,
which provides a resistance to the ¯ow. The paper
by Fulks et al. [12] presents a correct and relatively

simple derivation of a Darcy momentum equation.
This is based on considerations of force balance
applied to the region occupied by ¯uid.
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3. An analogy

There is a further noteworthy feature of Eq. (1). The
Darcy drag term and the magnetic drag term are both
linear in the velocity, and so can be combined into a

single term. With the correct porosity factor included,
one has a total drag 

n
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where m=rn is the dynamic viscosity. The new dimen-

sionless parameter

N � sB 2
0K=fm � sB 2

0=mR �7�

which appears here may be interpreted as the ratio of
rate of magnetic dissipation (of mechanical energy, per
unit volume) to rate of viscous dissipation.

Thus the e�ect of the uniform applied magnetic
®eld, directed perpendicular to the boundary, is to
reduce the e�ective permeability in this case of bound-
ary layer ¯ow. In the more general situation, the main

hydrodynamic e�ect of a uniform applied magnetic
®eld is to inhibit ¯ow transverse to the magnetic ®eld
lines but not ¯ow longitudinal to the magnetic ®eld

lines.Consequently, there is an analogy between the
MHD ¯ow in an isotropic medium and hydrodynamic
¯ow in a medium with anisotropic permeability, the

principal axes of anisotropy being aligned parallel and
perpendicular to the uniform applied magnetic ®eld.
The longitudinal permeability is not a�ected by the
magnetic ®eld, but the transverse permeability is

decreased by a factor (1+N )ÿ1.
In the case of ¯ow in a rotating porous medium the

situation is similar. Flow transverse to the rotation

vector is inhibited (the Taylor±Proudman e�ect ) while
¯ow longitudinal to the rotation vector is not in-
hibited. As a result, Darcy ¯ow in a rotating isotropic

porous medium is analogous to ¯ow in a medium with
anisotropic permeability. This analogy was demon-
strated by Palm and Tyvand [3], in the context of the

onset of natural convection induced in a horizontal
layer uniformly heated from below. The author is not

aware of any previously published discussion of the
corresponding MHD analogy.
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